

Assessment of Healthcare-Associated Infections & Antibiotic Resistance Outbreak Detection Data, Tools, and Barriers

Michael Anderson, MPH¹; Nicole Bryan, MPH, CIC, CPH²; Wendy Bamberg, MD³; Caitlin Pedati, MD, MPH, FAAP⁴; Maureen Tierney, MD, MSc.⁵; Marion Kainer, MD, MPH, FRACP, FSHEA⁶

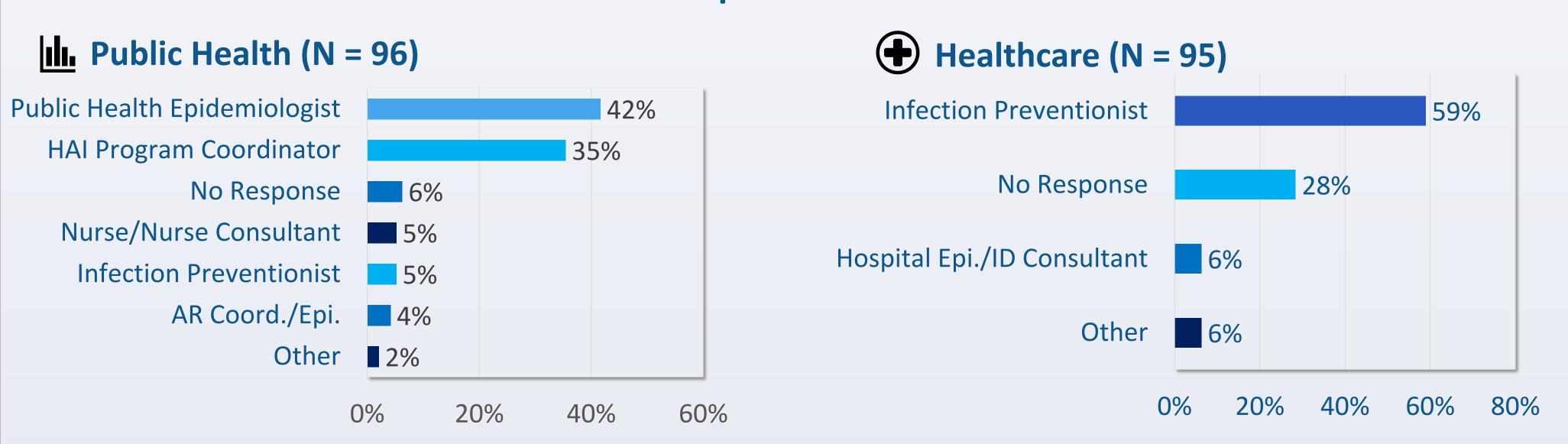
Council for Outbreak Response: Healthcare-Associated Infections & Antibiotic Resistant Pathogens (CORHA) Website: corha.org

Background

- The Council for Outbreak Response: Healthcare-Associated Infections (HAI) and Antibiotic Resistant Pathogens (AR) (CORHA) is a multidisciplinary partnership consisting of public health and healthcare organizations charged with developing consistent and coordinated approaches to improve the detection, investigation, response, and prevention of HAI/AR outbreaks.
- Public Health and its healthcare partners share responsibilities for responding to HAI/AR outbreaks. This extends to outbreak detection and reporting. As a general rule, public health agencies prefer to learn about potential outbreaks early. Healthcare partners often serve as the "eyes and ears" that are able to alert public health to HAI/AR events that require their involvement (e.g., novel pathogens; contaminated medical products; other outbreaks).
- The CORHA Outbreak Detection and Reporting Workgroup developed an assessment to better understand how HAI programs at public health departments and healthcare organizations use technology to detect potential HAI/AR outbreaks. Methods
- The assessment was launched in July 2017 and responses were collected electronically using Qualtrics.
- Recipients were asked to: 1) Describe their HAI/AR surveillance data sources and software tools used to detect outbreaks. 2) Describe any barriers they experienced using surveillance system data for outbreak detection.
- All public health jurisdictions received the assessment
- Healthcare partner organizations (SHEA & APIC) shared the assessment with their respective networks via email newsletter.

Results

Work Setting


Public Health (N = 96)*

Work Setting	No. (%)		
State Health Department	52 (54)		
No Response	25 (26)		
Local Health Department	13 (14)		
Large Local/Urban Health Department	3 (3)		
District/Regional Health Department	2 (2)		
Hybrid State/Local Health Department	1 (1)		
*Limitation: 5 state jurisdictions had multiple respondents			
Healthcare (N = 95)			
Work Setting	No. (%)		

Thealthcare (N = 95)	
Work Setting	No. (%)
Hospital	47 (49)
No Response	25 (26)
Critical Access Hospital	7 (7)
Behavioral/Psychiatric Facility/Unit	6 (6)
Long-Term Care Facility	2 (2)
Outpatient Facility	2 (2)
Long-Term Acute Care Hospital	1 (1)
Other	5 (5)

Results

Occupation Distribution

Data Sources Used for Outbreak Detection by Public Health and Healthcare

III. Public Health (N = 96)

Existing Data	No. (%)
CDSS [†] : CRE, VRE, other [§]	26 (20)
None	20 (15)
CDSS: HBV, HCV§	19 (15)
NHSN [‡] HAIs (CLABSI, CAUTI, SSI, VAE, VAP) §	15 (12)
PH Laboratory Information Systems	15 (12)
NHSN LabID event module (CDI, MRSA, CRE, ESBL, VRE, MSSA) §	14 (11)
Syndromic surveillance data	14 (11)
Other	7 (5)

†Communicable Disease Surveillance System (CDSS) *National Healthcare Safety Network (NHSN)

Healthcare (N = 95)

Existing Data	No. (%)
Microbiology laboratory data	29 (26)
Electronic health record data	22 (20)
NHSN HAIs (CLABSI, CAUTI, SSI)	19 (17)
NHSN LabID event module (CDI, MRSA, CRE, ESBL, VRE)	17 (15)
Pharmacy data	10 (9)
Billing/coding data	5 (5)
NHSN Dialysis event data	2 (2)
Other	6 (6)

Software Tools Used by Public Health to Detect Outbreaks

Public Health (N = 96)*

Software Name	No. (%)
None	31 (36)
Statistical Analysis Software (SAS)	19 (22)
ESSENCE#	10 (12)
No Response	10 (12)
SATScan	7 (8)
R	6 (7)
Communicable Disease Surveillance System (CDSS)	4 (5)
WHONet	3 (3)
Microsoft Excel/Access	3 (3)
National Healthcare Safety Network (NHSN)	2 (2)
STATA	1 (1)
Research Electronic Data Capture (REDCap)	1 (1)

*Healthcare reported using software tools such as EPIC (11, 32%), Theradoc (4, 12%), MedMinded (3, 9%), Vigilanz (2, 6%), Other (9, 25%), & None (5, 15%) (N = 34) *Electronic Surveillance System for the Early Notification of Community based Epidemics (ESSENCE)

Public Health (N = 96)

Software Tool Utilization, No.	SATScan	WHONet	SAS	R	ESSENCE
NHSN LabID	4	1	8	5	3
NHSN HAIs	5	1	8	4	4
CDSS: CRE, VRE§	5	2	12	4	7
CDSS: HBV, HCV§	4	1	10	4	6
Public Health Lab Information Systems	3	0	7	3	3
Syndromic Surveillance data	2	1	6	4	9
Totals	7	3	17	5	9

Not enough resources 13 Not timely enough Access to data, system Lack of expertise Lack ease of use/simplicity Inaccurate/low quality Other

Barriers to Surveillance

Conclusions

 \blacksquare PH (N = 96) \blacksquare HC (N = 95)

Unclear case definition

Too many false alarms

Sample bias

- Public health and healthcare organizations have different data sources and tools available for assessing HAI/AR outbreaks, likely reflecting the different goals and access of organizations
- Public health tends to have access to more analytic software but not as many primary data sources
- Of public health respondents, 36% reported no use of software to detect outbreaks
- There is a wide variety of data sources and software tools used to detect healthcare-associated outbreaks among public health agencies and acute care facilities
- There is a need for more resources to support timely detection of HAI/AR outbreak events
- These results highlight data sources and will help improve data sharing & access between public health & healthcare

Resources

 CORHA is uniquely positioned to join critical stakeholders and develop guidance documents, tools, and recommendations to improve HAI/AR outbreak detection and response. One example product (available on corha.org) is the CORHA HAI-AR Outbreak and Response Tracking System which can be used by health departments and large healthcare systems to manage information related to investigations of possible HAI-AR outbreaks.

Acknowledgments

- CORHA Member Organizations and the Workgroup for Outbreak Detection and Response.
- Council of State and Territorial Epidemiologists (CSTE) and Association of State and Territorial Health Officials (ASTHO) for staff and member support.
- This publication was supported by cooperative agreement number 5U38OT000143-05. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC, CSTE, or other CORHA member organizations.
- Medical Center; 3) Colorado Department of Public Health and Environment 4) Iowa Department of Public Health; 5) Nebraska Department of Health and Human Services; 6) Tennessee Department of Health

Author Affiliations: 1) Council of State and Territorial Epidemiologists; 2) Gwinnett